On Graph Construction for Classification of Clinical Trials Protocols Using Graph Neural Networks

نویسندگان

چکیده

A recent trend in health-related machine learning proposes the use of Graph Neural Networks (GNN’s) to model biomedical data. This is justified due complexity healthcare data and modelling power graph abstractions. Thus, GNN’s emerge as natural choice learn from increasing amounts While formulating problem, however, there are usually multiple design choices decisions that can affect final performance. In this work, we focus on Clinical Trial (CT) protocols consisting hierarchical documents, containing free text well medical codes terms, a classifier predict each CT protocol termination risk “low” or “high”. We show while using solve classification task very successful, way constructed also importance one benefit making priori useful information more explicit. consider an independent pose problem classification, consistent performance improvements be achieved by considering them super-nodes unified connecting according some metadata, like similar condition intervention, finally approaching node rather than classification. validate hypothesis experimentally large-scale manually labeled database. provides insights flexibility graph-based modeling for domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Graph Classification with 2D Convolutional Neural Networks

Graph learning is currently dominated by graph kernels, which, while powerful, suffer some significant limitations. Convolutional Neural Networks (CNNs) offer a very appealing alternative, but processing graphs with CNNs is not trivial. To address this challenge, many sophisticated extensions of CNNs have recently been introduced. In this paper, we reverse the problem: rather than proposing yet...

متن کامل

Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification

Using predictive models to identify patterns that can act as biomarkers for different neuropathoglogical conditions is becoming highly prevalent. In this paper, we consider the problem of Autism Spectrum Disorder (ASD) classification. While non-invasive imaging measurements, such as the rest state fMRI, are typically used in this problem, it can be beneficial to incorporate a wide variety of no...

متن کامل

Graph-based Classification on Heterogeneous Information Networks Graph-based Classification on Heterogeneous Information Networks

A heterogeneous information network is a network composed of multiple types of objects and links. Recently, it has been recognized that heterogeneous information networks are prevalent in the real world. Sometimes, label information is available for part of the objects. Learning from such labeled and unlabeled data can lead to good knowledge extraction of the hidden network structure. However, ...

متن کامل

Graph Partition Neural Networks for Semi-Supervised Classification

We present graph partition neural networks (GPNN), an extension of graph neural networks (GNNs) able to handle extremely large graphs. GPNNs alternate between locally propagating information between nodes in small subgraphs and globally propagating information between the subgraphs. To efficiently partition graphs, we experiment with several partitioning algorithms and also propose a novel vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2022

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-09342-5_24